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We study experimentally the motion of an intruder dragged into an amorphous monolayer of horizontally
vibrated grains at high packing fractions. This motion exhibits two transitions. The first transition separates a
continuous motion regime at comparatively low packing fractions and large dragging force from an intermit-
tent motion one at high packing fraction and low dragging force. Associated to these different motions, we
observe a transition from a linear rheology to a stiffer response. We thereby call “fluidization” this first
transition. A second transition is observed within the intermittent regime when the intruder’s motion is made of
intermittent bursts separated by long waiting times. We observe a peak in the relative fluctuations of the
intruder’s displacements and a critical scaling of the burst amplitudes’ distributions. This transition occurs at
the jamming point �J defined as the point where the static pressure �i.e., the pressure measured in the absence
of vibration� vanishes. Investigating the motion of the surrounding grains, we show that below the fluidization
transition, there is a permanent wake of free volume behind the intruder. This transition is marked by the
evolution of the reorganization patterns around the intruder, which evolve from compact aggregates in the
flowing regime to long-range branched shapes in the intermittent regime, suggesting an increasing role of the
stress fluctuations. Remarkably, the distributions of the kinetic energy of these reorganization patterns also
exhibit a critical scaling at the jamming transition.
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Jamming occurs when a system develops a yield stress in
a disordered state �1–3� and has been reported in a wide class
of systems such as colloids �4�, foams �5�, emulsions �6�, and
granular materials �7,8�, as well as in various model situa-
tions �2,9–11�. One possible mechanism for such a change
between fluidlike and solidlike behaviors is that rearrange-
ments of particles become progressively slower while the
stress relaxation time grows dramatically. The dynamics be-
comes spatially heterogeneous and temporally intermittent,
while the stress response appears more and more heteroge-
neous. A stringent manifestation of such inhomogeneities is
the “stick-slip” response observed when the system is driven
close to yielding and flows in rapid bursts. However the in-
terplay between density fluctuations and stress relaxation is
still poorly understood. Questions of interest are as follow:
What is the nature of the rearrangement events? How do
these events depend on the external load and packing frac-
tion? Also from a more fundamental viewpoint, whether the
emergence of a yield stress coincides with dynamical arrest
is still a matter of debate.

Microrheology is a promising technique providing local
probes of the dynamics in complex fluid �12�. Studying the
motion of an intruder embedded in the material of interest,
one is able to investigate the microscopic origins of the
complex-fluid behavior and in particular the link between
microscopic mechanisms and macroscopic properties as
given by conventional rheology. Applying a force to the in-
truder, one explores the nonequilibrium and usually nonlin-
ear response, providing detailed insight into the structure-
dynamics relationship. Previous drag experiments in colloids
�4�, foams �13�, static �14�, and shaken �15� granular media

as well as simulations of structural glasses �9� were focusing
on the velocity dependence of the drag force: proportionality
is found for loose enough systems, reminding Stoke’s law,
while an increasing yield stress appears for denser packing.
Stress fluctuations have been studied in detail in �16� and
spatial reorganizations in �17�; however a clear picture filling
the gap between spatial fluctuations and rheological observa-
tions is still lacking.

In the present paper, we investigate the motion of an in-
truder dragged with a constant force within an amorphous
monolayer of horizontally vibrated grains, a system for
which the jamming transition has been clearly identified and
characterized in terms of the critical behavior of the dynam-
ics in a previous study �18�. At moderate packing fractions
and comparatively high force, the intruder moves rapidly as
soon as the force is applied. Above some threshold value of
the packing fraction which increases with the applied force,
the intruder exhibits an intermittent creep motion with strong
fluctuations reminiscent of a “crackling noise” signal. Simul-
taneously, the force-velocity relation evolves from a linear
rheology to a stiffer response, thereby suggesting to call “flu-
idization” this first transition. A second transition is observed
within the intermittent regime when the intruder’s motion is
made of intermittent bursts separated by long waiting times.
This transition is signed by a peak in the relative fluctuations
of the intruder’s displacements and a critical scaling of the
bursts amplitudes’ distributions. This transition occurs at the
jamming point �J characterized in �18� and defined as the
point where the static pressure �i.e., the pressure measured
when the vibration is switched off� vanishes. In �18�, Lech-
enault et al. demonstrated that dynamical heterogeneities be-
come critical at the transition. Here we investigate the mo-
tion of the grains surrounding the intruder. Below the
fluidization transition a wake of free volume is observed be-*olivier.dauchot@cea.fr
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hind the intruder and the fluidization transition is marked by
the evolution of the reorganization patterns around the in-
truder, going from compact aggregates in the flowing regime
to long-range branched shapes in the intermittent regime,
suggesting an increasing role of the stress fluctuations. The
distributions of the kinetic energy of these reorganization
patterns also exhibit a critical scaling at the jamming transi-
tion.

This paper is an extended version of a recently published
letter �19�, in which both transitions have been reported. The
purposes of the present paper are to provide a comprehensive
study of the displacement fields surrounding the intruder and
to take this opportunity to provide details on our analysis
procedures as well as an extended discussion of our results.
The paper organizes as follows: the experimental setup and
protocols are described in Sec. I. In Sec. II we first introduce
the raw dynamical quantities and the phase diagram �Sec.
II A�, then we characterize the fluidization �Sec. II B� and
jamming �Sec. II C� transitions. The dynamics around the
intruder is analyzed in Sec. III both by the relation between
the average flow and the spatial fluctuations �Sec. III A� and
by the evolution of the averaged free volume around the
intruder �Sec. III B�. Finally, we study the bursts statistics in
the intermittent regime close to jamming in Sec. IV. A gen-
eral discussion and a few concluding remarks are given in
Sec. V.

I. EXPERIMENTAL SETUP AND PROTOCOL

The experimental setup has been described elsewhere �18�
and we shall only recall here its most important characteris-
tics and the modifications induced by the dragging proce-
dure. The system is made of a monolayer of 8500 bidisperse
brass cylinders of diameters dsmall=4�0.01 mm and dbig
=5�0.01 mm laid out on a horizontal glass plate sinusoi-
dally vibrated in its plane at a frequency of 10 Hz and with
a peak-to-peak amplitude of 10 mm. The grains are confined
in a cell, fixed in the laboratory frame, and the volume of
which can be adjusted by a lateral mobile wall controlled
by a �m accuracy translation platen, which allows us to vary
the packing fraction � of the grains by tiny amounts
��� /��5�10−4�. The pressure exerted on this wall is mea-
sured by a force sensor �see Fig. 1�. The intruder consists in
a larger particle �dintruder=2dsmall� of same height introduced
in the system and pulled by a mass via a pulley perpendicu-
larly to the vibration. In all data presented here the resultant
motion is strongly overdamped and the applied force can be
considered as constant. We use a fishing wire that stands over
the other grains and does not disturb their dynamics. The
time unit is set to one plate oscillation while the length unit
is chosen to be the diameter of the small particles. The drag
forces F are expressed as the ratio of the applied mass onto
the total mass of grains in the cell �Mtot=2.365 kg�.

We have been using two protocols, setting either the drag
force or the packing fraction constant. We explore the force
and packing fraction diagram along constant force lines us-
ing three different drag forces �F1=0.029, F2=0.064, and
F3=0.113� and varying the packing fractions from �
=0.8223 to 0.8418 and along constant packing fraction lines

using three different packing fractions ��1=0.8383, �2
=0.8304, and �3=0.8399� and varying the drag force from
F=0.029 to 0.617, as sketched in Fig. 2.

Starting from a low packing fraction �, we gradually
compress the system until it reaches a highly jammed state
following the same protocol as in �18�. Then we stepwise
decrease the packing fraction. In the absence of the intruder,
it was shown on the one hand that the average relaxation
time increases monotonically with the packing fraction and
on the other hand that the dynamics exhibits strong dynami-
cal heterogeneities, length scale, and time scale of which

(b)

(a)

(c)

FIG. 1. �Color online� Top: experimental setup �see text for
details�. Bottom: two samples of displacement fields around the
intruder at �J for similar x displacements of the intruder
��x=2.14 and 2.08 in 14 and 131 time steps, respectively�. The
arrows show the unmagnified grain displacements, while the inter-
polated amplitude field is in gray scale.

FIG. 2. Experimental conditions in a force-educed packing frac-
tion � diagram. Each point corresponds to a trajectory of the in-
truder into the media. The horizontal and vertical dotted lines cor-
respond to the experimental exploration paths either at constant
force of packing fraction. � � � � denotes the fluidized �intermittent�
behavior �see text for definition�.
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exhibit a sharp peak at an intermediate packing fraction. The
authors have shown that the spatial correlations of these dy-
namical heterogeneities exhibit a critical scaling at the tran-
sition. The pressure measured at the wall in the absence of
vibration falls to zero precisely below that packing fraction,
hence called the jamming transition �J. It is important to
mention that for such high packing fractions, the structure as
given by the neighborhood relation among the grains is fro-
zen on experimental time scales. Hence the observed transi-
tion is to be understood as the jamming of a given frozen
configuration. Accordingly the value of �J may slightly
change from one run to another since it may differ from one
frozen configuration to another. In the present case, by moni-
toring the pressure at the wall while interrupting the vibra-
tion and without drag force, we could localize the jamming
transition and obtain three close but different values �J:
0.8369 �F1�, 0.8383 �F2�, 0.8379 �F3�, and 0.8388 in the run
where we explore iso-� lines. These values also are slightly
smaller than the value �J=0.8417 reported in �18�, maybe an
effect of the geometrical distortion induced locally by the
size of the intruder, twice larger than the other grains. In the
following we will use either the packing fraction � or the
reduced packing fraction �= ��−�J� /�J.

In the present study, before each step, the intruder is re-
moved from the position it has reached, replaced by one big
and two small grains, and inserted at its initial position in
place of one big and two small grains. Then a downward step
in packing fraction is eventually done, and the system is kept
under vibration up to 1 h in order to “equilibrate” the con-
figuration. At that point, the pressure has the same value as
without the intruder for the corresponding packing fraction,
indicating that the system has recovered from the small per-
turbation induced by the intruder’s “teletransportation.” Only
then the force is applied and the intruder is dragged through
the cell, while its stroboscopic motion together with that of a
set of 1800 surrounding grains in the center of the sample is
tracked by a digital video camera triggered in phase with the
oscillations of the plate.

II. FLUIDIZATION AND JAMMING

A. Phase diagram

When looking at the trajectories of the intruder along the
drag direction x �see Fig. 3 �top left��, one immediately no-
tices that the typical velocity dramatically changes within a
tiny variation of the packing fraction: the intruder browses
the entire system in a few time steps for low packing frac-
tions and conversely seems to be arrested for the highest
values of �. For a given drag force, the average displacement
probed over a lag time 	, �x�	�= �x�t+	�−x�t��t is roughly
V	, where V is the intruder’s average velocity. V spans four
decades from 5�10−4 to 5 while varying the packing frac-
tion of only a few percent ��� /�=2�10−2�, illustrating the
dramatic freeze of the dynamics �Fig. 3 �top right��. For the
highest packing fractions, one may notice a systematic bend-
ing of the curves at short times indicating that the intruder
does not feel instantaneously the bias induced by the drag
force.

A closer inspection of the dynamics reveals two salient
distinct regimes of the intruder’s motion. For loose packings
and large drags, the intruder moves continuously, while for
dense packings and small drags the intruder’s motion is
highly intermittent. Anticipating on the following, let us call
this transition fluidization and emphasize that it is distinct
from the jamming one as illustrated on the phase diagram
�Fig. 2�. Only for the largest forces, both transitions become
asymptotically close, as illustrated on Fig. 3 �bottom left�,
where the instantaneous displacement of the intruder is
shown for two packing fractions just below and above the
transition. Just below the transition the intruder is moving
continuously fast like in a fluid—note the time scale on the
horizontal axis—while just above it one observes violent
bursts separated by extremely long waiting times, indicating
that the medium is not fluidized. We now characterize in
more detail the nature of these two transitions.

B. Fluidization

The intruder’s motion results from the drag force compet-
ing against the resistance of the surrounding grains. When

(b)(a)

(c) (d)

FIG. 3. �Color online� Top left: trajectories of the intruder for
several packing fractions from �=0.8306 �red� to �=0.8418 �blue�
at constant force �F=F2�. The trajectories at the highest packing
fractions are truncated. Top right: log10 of the average displacement
of the intruder �x as a function of the lag time 	 for the same
packing fractions and the same drag force. Bottom left: log10 of the
average velocity of the intruder as a function of the packing fraction
�, same packing fractions and drag force. Bottom right: instanta-
neous displacements of the intruder at a high drag force �F
=0.363� for two very close packing fractions on both sides of the
fluidization and jamming transition, here indistinguishable. At �
=0.8383 the intruder is always moving while at �=0.8394 one can
observe intermittent bursts of activity separated by long waiting
intervals.
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the drag force is low enough or if the packing is dense
enough the configuration can sustain the drag stress until
some rearrangement of the force network, induced by the
vibration, allows the intruder to move forward. In the mean-
time, the intruder’s motion is cagelike and almost isotropic,
going forward and backward roughly half of the time. Figure
4 �left �middle�� displays the percentage of time the intruder
is going backward %�x− as a function of the relative packing
fraction 
 for the three constant forces F1 ,F2 ,F3 �as a func-
tion of the dragging force for the three packing fractions
�1 ,�2 ,�3�. In the extreme cases for which the system is
most of the time stuck in jammed states %�x− is very close
to 0.5. As the drag force becomes stronger as compared to
the resistance of the surrounding grains, the intruder will be
less and less often blocked. As a result the percentage of
backward steps will be smaller and eventually will drop to 0
when the intruder motion becomes continuous. This is pre-
cisely how we have chosen to identify the fluidization tran-
sition pointed out by an arrow on the figure. The most strik-
ing feature is that we could not observe fluidization for the
two packing fractions larger than �J. %�x− decreases with
the force but remains far from zero even for forces as large
as 0.6, which is of the order of the force needed to drag all
the grains on the glass plate in the absence of vibration. Our
data suggest a divergence of the fluidization line at the jam-
ming transition: Fflow��−1 �see inset of Fig. 4 �left��. Look-
ing at the force-velocity relation as shown on Fig. 4 �right�,
we observe that an affine behavior F−Fflow�V in the fluid-
ized motion regime, i.e., above the fluidization line, whereas
in the intermittent regime either F� ln�V� or F�V is pos-
sible. Note however that in the latter case the response is
clearly stiffer than in the fluidized regime. This demonstrates
that the fluidization line also separates two rheological be-
haviors. Such a fluidization transition has been previously
reported in other experimental studies. However a straight-
forward comparison cannot be made without further enqui-
ries, which we shall report to the discussion part.

C. Jamming

We now characterize the intruder dynamics when ap-
proaching the jamming transition. When looking at the in-

truder’s instantaneous displacements �x along the drag direc-
tion in the intermittent regime �Fig. 3 �bottom right� and
Fig. 9 �left��, one immediately notices very strong fluctua-
tions, with bursts of widely fluctuating magnitude in the di-
rection of the drag. As a result the distributions of �x �Fig. 5
�top left�� exhibit an important skewness toward the positive

(b)(a) (c)

FIG. 4. �Color online� Left: ratio of negative displacements %�x− as a function of the reduced packing fraction � for three different
forces: F1 ���, F2 ���, and F3 ���. For clarity, only one point with a ratio of 0 is shown. Inset : fluidizations force as a function of the
reduced packing fraction �= ��−�J� /�J. Each point corresponds to the moment where the ratio of negative displacements reaches 0. These
points are also marked with arrows in the left and middle figures. Middle: ratio of negative displacements as a function of the drag force F
for three different packing fractions: �1 ���, �2 ���, and �3 ���. Right: applied drag force as a function of the average velocity of the
intruder in a ln-ln plot at �1. Inset: idem in a ln-log plot for different packing fractions: �1 ���, �2 ���, and �3 ���. Fits are eye-guiding
affine �dotted� or logarithmic �plain� behaviors.

(b)(a)

(c) (d)

FIG. 5. �Color online� Top left: Pdf of the instantaneous dis-
placements in the drag direction �x at a constant force F=F2 for
several values of �. Inset: same for the positive displacements only
in log-log scale. Top right: cumulated pdf of the instantaneous dis-
placements in the drag direction �x at a constant packing fraction
�=�1 for several values of F. Bottom: inverse average 1 /�+ �left�
and standard deviation over average �+ /�+ �right� of the instanta-
neous positive displacements in the drag direction as functions of
the reduced packing fraction �. Different curves correspond to dif-
ferent drag forces: F1 ���, F2 ���, and F3 ���.
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displacements for the packing fractions above fluidization. In
order to characterize these positive displacements �x

+, we
compute the average value over time �+= ��x+�t and the rela-
tive fluctuations,

�+

�+ =
����x+ − �+�2�t

�+ . �1�

Figure 5 �bottom left� shows that 1 /�+, the typical time the
intruder takes to move one particle diameter, increases
monotonically with � and faster than exponentially. The
stronger the dragging force the sharper the increase. No sig-
nificant behavior is observed when crossing the jamming
transition. On the contrary, Fig. 5 �bottom right� reveals a
peak of �+ /�+ precisely at �J for the three dragging forces.
Note that the peak sharpens when the drag force is stronger.
Indeed, as discussed in Sec. II B, when F increases the flu-
idization line approaches the jamming transition. This has
two consequences. The displacement bursts become larger
when they occur—as can be seen on Fig. 5 �top left� from the
cumulated distribution of the intruder displacements for in-
creasing forces—and the range of packing fraction separat-
ing the nonfluctuating continuous motion in the fluidized re-
gime from the strongly intermittent one at jamming shrinks.
Finally let us mention that in the intermittent regime the
distributions of �x+ decay as power laws with an exponent
close to −3 �see inset of Fig. 5 �top left��, a result similar to
the one reported in a recent simulation, where a probe is
dragged into an assembly of harmonically repulsing disks
�20�.

The above results reveal that the strong spatiotemporal
heterogeneities of the dynamics reported in the absence of
intruder �18� can also be seen in the response of the intruder
to the dragging force. This is related to the fact that mi-
crorheology gives access to nonlinear responses and thereby
probes the strength required to pull free the probe from the
transient local structure. Before addressing in further detail
the critical nature of the fluctuations reported here above, we
will concentrate on the response of the grains surrounding
the intruder. This will ultimately allow us to perform the
statistical analysis of the rearrangement events as a whole,
involving both the intruder and the surrounding grains.

III. AROUND THE INTRUDER

A. Average flow and spatial fluctuations

As already suggested in Fig. 1, the instantaneous displace-
ment field around the intruder during a burst is rather com-
plex. They are typically asymmetric, with a main vortex on
one or the other side of the intruder. Averaged over many
bursts �see Fig. 6 �top right��, the displacement field recovers
the intruder’s left-right symmetry and exhibits a two vortice
pattern. Further insight into the dependence of this flow on
the packing fraction is obtained when looking at the profiles
of the x component of the velocity along the direction of the
drag �x direction� and perpendicular to the drag �y direction�
�see Fig. 6 �right top and bottom��. As evidenced in the in-
sets, one observes that the velocity field decreases exponen-
tially with the distance to the intruder and amazingly that the

typical length scales x	7 and y 	10 associated with such
a dependence are totally independent from the packing frac-
tion. This is also confirmed by the localization of the center
of the vortices, easily located on the y profile, which remains
at the same distance from the intruder at all packing frac-
tions. Hence, as far as the averaged flow is concerned, only
its overall magnitude depends on the packing fraction and
scales like V, the averaged velocity of the intruder.

In order to study the fluctuations of the displacement field,
one could imagine to subtract the averaged field; however
without a prescription for the analytical form of this field or
outstanding statistics, this is a rather uncontrolled operation,
especially in the vicinity of jamming where fluctuations
grow. The alternative procedure is to define first a maximal
displacement for the grains, vmax, as the average displace-
ment of the intruder’s closest neighbors and then to define
the “fast particle” cluster as the connex cluster of particles
around the intruder which move more than vmax /2. The av-
erage number of particles in this fast cluster is plotted on Fig.
6 �bottom right� as a function of the packing fraction: it
grows from 10% to 80% in the tiny interval between
�=0.8306 and �=0.8409, underlining how sharply the spa-
tial extent of the reorganizations grows as the system goes
toward dynamical arrest. It is however surprising that the

(b)(a)

(c) (d)

FIG. 6. �Color online� Left: velocity profiles—average velocity
in the x direction along the horizontal �top� and vertical �bottom�
axes for 15 packing fractions. Inset: same in absolute values and
log-ln. The dark dotted line is an exponential decaying guide with a
characteristic length x=7. Top right: displacement field around the
intruder at �=0.8386 averaged over time. The arrows are magnified
by a factor 3. Bottom right: average percentage of particles in the
connex clusters of particles faster than vmax /2 as a function of the
reduced packing fraction. Error bars show the standard deviation.
The gray area corresponds to the intermittent regime. In all plots,
F=F2.
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number of fast particles increases, considering that the aver-
aged flow scales entirely with the velocity of the intruder
which we have scaled out by defining the “fast” particles
relatively to the average velocity around the intruder. Such a
difference between the averaged flow behavior and the in-
stantaneous one can only be explained by the existence of
strong heterogeneities in the instantaneous fields. The ampli-
tude of the fluctuations of the number of fast particles, as
indicated by the error bars on Fig. 6 �bottom right�, is already
an indication that it is indeed the case.

A further characterization of these heterogeneities is pro-
vided by the shape of the clusters made of the p% fastest
particles at each time step; typical examples with p=15% are
shown on Fig. 7 �top� for three packing fractions below, at,
and above �0 the fluidization packing fraction. One clearly

observes that these instantaneous rearrangements evolve
with the packing fraction from dense to branched patterns
with long chains spanning the whole system. The number of
neighbors nneigh inside these clusters is a good indicator of
the level of branching since its typical value is 6 for perfectly
dense clusters and 2 for perfect strings. The well-defined
plateau in the dependence of �nneigh� with p �Fig. 7 �middle
left�� corresponds to the clusters which contain enough par-
ticles to have a nontrivial shape but do not reach the bound-
aries of the acquisition field. The average number of neigh-
bors at the plateau �Fig. 7 �middle right�� decreases
significantly with the packing fraction providing a quantita-
tive evaluation of the clusters’ evolution from dense aggre-
gates to branched structures. The contour fractal dimension
df

c calculated with the classical compass method �21� also

(b)(a) (c)

(d)

(f)

(e)

(g)

FIG. 7. �Color online� Top: typical contours of clusters of the p=15% fastest particles for three packing fractions from left to right:
�=0.8337 ����0�, �=0.8358 ��=�0�, and �=0.8396 ����0�. The intruder is marked by a black disk and moves from left to right.
Middle left: average number of neighbors �nneigh� as a function of p for different packing fractions. The black dotted line is at p=40% in the
middle of the plateau. Middle right: �nneigh� in the clusters of p=40% fastest particles as a function of �. The gray area corresponds to the
intermittent regime, and error bars show the standard deviation. Bottom left: average fractal dimension of the clusters contours �df

c� as a
function of p for different packing fractions. The black dotted line is at p=40%. Bottom right: �df

c� as a function of � for p=40%. The gray
area corresponds to the intermittent regime, and error bars show the standard deviation. F=F2 for all plots.
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gives insight on branching. The mean value �df
c��p� has a

nice maximum for the range of p corresponding to the pla-
teau in �nneigh��p�. For a value of p=40%, that is for clusters
large enough to assess the fractal dimension without span-
ning the acquisition field, we observe a significant increase
of df

c��� at �0, the packing fraction where the intruder’s
motion becomes intermittent.

Altogether, the patterns observed in the instantaneous dis-
placement field during the relaxation events suggest that the
force chain network, whose importance has been visually
exemplified in photoelastic disk experiments of an intruder
dragged in a Couette cell �8�, starts playing a significant role
as soon as the system crosses the fluidization transition.
However, one cannot elude the role of the density field,
which we now investigate computing the free volume field
around the intruder.

B. Free volume

We then examine the density field around the intruder. For
that purpose, we compute the free volume field extracted
from Laguerre’s tesselation �42� of the configurations at each
time step; the free volume V f of a Voronoï cell is the area
difference with the minimal possible regular hexagon around
the grain normalized by the surface of the grain. Figure 8
displays the averaged free volume field around the intruder
for three packing fractions below, above, and at the jamming

transition. Above �J, there is a very small amount of decom-
paction around the intruder without significant signature of
the intruder motion, seemingly an effect of the size differ-
ence between the intruder and the surrounding grains dis-
turbing the local organization of the packing. On the con-
trary, as the packing fraction decreases below jamming, two
holes grow, first on the back of the intruder and then on its
front.

As a consequence, one observes a clear signature of the
intruder’s motion, namely, the apparition of a forward-
backward asymmetry which can be quantified by computing,
for instance, the average free volume in front of and behind
the intruder �Fig. 8 �bottom right�� �43�. One observes that
above �J, there is no more sign of the asymmetry associated
with the intruder motion.

Altogether, we have seen that the averaged flow around
the intruder is surprisingly insensitive to the transition, apart
from a simple scaling factor indexed on the average velocity
of the probe. On the contrary, the fluctuations reveal a rather
complex interplay of the density and stress fluctuations. Be-
low the fluidization transition, the intruder motion is domi-
nated by important free volume rearrangements, which con-
centrate in dense clusters of fast moving grains around the
intruder. As soon as the system enters the intermittent re-
gime, these clusters start to branch, indicating the existence
of inhomogeneities in the rigidity of the system. The instan-
taneous displacements spread on larger and larger scales and
progressively the free volume fluctuations become distrib-
uted throughout the system. Above �J these last types of
rearrangement completely dominate the intruder motion.

IV. BURST STATISTICS CLOSE TO JAMMING

In Sec. III B, we have seen that the temporally intermit-
tent motion of the intruder also corresponds to spatially het-
erogeneous rearranging regions. We will now investigate the
intruder displacements and the kinetic energy of these re-
gions, focusing on the temporal correlations at the root of
this dynamics of bursts. Figure 9 �bottom� displays the in-
stantaneous displacement �x�t� and the kinetic energy in-
volved in a rearrangement �E�t�=��xi

2�t�, where the sum is
performed on the clusters of particles faster than vmax /2, as
defined in Sec. III A. For three different packing fractions
chosen above the fluidization transition, one clearly observes
a sequence of distinguishable and well separated bursts, sug-
gesting “crackling-noise-like signals �22,23�.

Note that the signals of �x�t� and �E�t� are very similar.
However the correlation is not as strong as one would first
imagine by visual inspection. Each burst in the displace-
ments signal corresponds indeed to a burst in the kinetic
energy one but the bursts might be shifted in time and the
intruder’s displacements sometimes precede and sometimes
follow the energy ones. In addition, the amplitude of the
bursts only weakly correlates and there are some occasions
where there is a burst of activity in the system without a
displacement of the intruder itself �see an example on Fig.
9�, but these are marginal events.

The first step in analyzing such kind of signals is to coarse
grain the statistical distribution of the jumps to capture the

(b)(a)

(c) (d)

FIG. 8. �Color online� Top and bottom left: average free volume
fields around the intruder for three packing fractions: �=0.8327
����J, top left�, �=0.8386 ��	�J, top right�, and �=0.8405
����J, bottom left�. Bottom right: average free volume �V f� be-
fore ��� and after ��� the intruder as a function of the reduced
packing fraction. Error bars represent the standard deviation over
time of the free volume in each point of space, averaged on the
computation window.
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size and duration of the relevant bursts. One common way to
do so is to define a threshold or resolution coefficient in
order to delimit the temporal limits of each burst: given a
signal u�t� and a threshold û, one can define bursts or ava-
lanches as the connex portions of the signal that stand above
û; every burst have a duration Tu

i and an integrated amplitude
Su

i �see Fig. 9 �top left��. Choosing the threshold is a delicate
problem given the large variations of the displacements’ am-
plitudes, the complete loss of small events for the loosest
packings, and the fact that the background noise limits the
detection of small bursts at high packing fractions. In the
following we have set all the thresholds at the value where
the difference between the cumulated distributions of the lo-
cal minima and maxima of u�t� exhibits a peak. On one hand
this corresponds to the point where the minima and maxima
in u�t� are best separated and on the other hand it points out
to the threshold value for which the number of bursts is
maximal, naturally enforcing the statistics. We have checked
that multiplying the so-obtained thresholds by a factor from
1/2 to 2 does not change the following results.

First we observe on Fig. 10 �top right� that the waiting
times separating two successive bursts are exponentially dis-
tributed the characteristic time of which 	w	2 is indepen-
dent of the packing fraction �see inset�. Two conclusions can
be drawn: �i� the bursts follow a Poissonian process and can
be considered as independent events, and �ii� 	w remains
very small compared to the total time of the experiments. We
catch a large number of bursts even at the highest packing
fractions. Note that the use of a constant threshold to define
the bursts would have lead to a dramatic increase of these
waiting times in the intermittent regime and for the highest
packing fractions the number of bursts would have been van-
ishingly small.

We focus now on the statistics of the bursts themselves.
Let us note T and L, TE and E, the duration and the integrated
amplitude of the bursts recorded on the signal of the dis-
placements of the probe, respectively, of the kinetic energy
of the surrounding fastest grains. Obviously these quantities
are not independent from one another. The first step in the
analysis �see Fig. 10 �left�� shows that

L�T,�� = L0���T1/z and E�TE,�� = E0���TE
1/z, �2�

where L0 and E0 can be interpreted as the typical displace-
ment and energy associated with a burst and z=2 /3 is usu-
ally called the dynamical exponent. L0 depends on � in a
similar way as the average velocity of the intruder does,
consistently with the previous observation that the average
waiting time 	w is independent from �.

The second observation concerns the distributions of T,
TE and L /L0, E /E0. Again we find identical behaviors for the
intruder displacement and the kinetic energy of the fastest
surrounding grains �Fig. 10 �middle and right��. All the
above quantities are largely distributed, with a large value
cutoff, which depends on the packing fraction. Visual inspec-
tion of the tails of the distribution already indicates that the
cutoff dependence on the packing fraction is not monotonic.
In all plots the jamming packing fraction corresponds to the
light green curves. The distributions are the largest for that
precise packing fraction. Such behaviors can be encoded in
the following scaling relations:

��T� � T−�1+��f
 T

����
� , �3�

��TE� � TE
−�1+��fE
 TE

�E���
� , �4�

��L/L0� � �L/L0�−�1+��g
 L

����
� , �5�

��E/E0� � �E/E0�−�1+��gE
 E

����
� , �6�

where the exponents �	1 /2 and �	1 /3 satisfy the ex-
pected relation �z=�. Note that given the lack of statistics
these exponents are not the results of a fit but only indicative
values. One then easily extracts the scaling variables, which
are the cutoffs of the distributions and are simply propor-
tional to their mean values �44�. Their dependences on the

(b)(a)

(c) (d)

FIG. 9. �Color online� Top left: definition of the bursts of activ-
ity: given a threshold û on a signal u�t�, each connex portion of
signal above the threshold defines a burst. Tu is the duration of the
burst, while Su is its area �in gray�. The waiting times between
bursts are noted Tu

w. Top right: cumulated probability density func-
tions of the time intervals Tw between bursts of displacements for
15 packing fractions from �=0.8306 �red� to 0.8418 �blue� at the
constant drag force F2. Inset: average waiting time 	w for the same
packing fractions estimated by an exponential fit. Error bars repre-
sent the 95% confidence bounds of the fit. Bottom left: instanta-
neous displacements �x�t� of the probe for three packing fractions.
Bottom right: energy of the grains �E�t� around the intruder for the
same packing fractions. Note that all peaks can be found in both
signals except some rare events such as peak 4. F=F2 for all bottom
plots.
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packing fraction are plotted in the insets of Fig. 10 and ex-
hibit a sharp peak at the jamming transition, suggesting a
critical behavior and thereby ensuring the self-consistency of
the above scaling analysis. This critical behavior is well de-
scribed by

���� � �E��� � �−�, �7�

���� � ���� � �−�, �8�

where �	−2 /3 and �	−1 also satisfy the relation �=�z.
Altogether the above analysis provides strong evidences

of a critical behavior of the intruder motion at the jamming
transition, enforcing the first evidences of dynamical critical-
ity reported in �18�. Figure 11 reports the length scale �
measured here for the three different dragging forces, to-
gether with the dynamical correlation length �4, which is the
correlation length of the local density relaxations and which
was computed in �18�. The authors reported a dependence of
�4 with the distance to jamming compatible with �4��−1/2,
however it cannot really be discriminated from �4��−1, as
reported in the present work for the length scale �. Indeed,
the fits of � and �4 both give a typical 95% confidence inter-
val with a width of �0.6 on the exponent �. The fact that
both length scales behave in a similar way at the transition
suggests a fluctuation-dissipation-like relation between the

nonlinear response studied here and dynamical heterogene-
ities, as recently discussed in the context of mode coupling
theory �24�. In the following we discuss our results as com-
pared to other microrheological studies in dense systems of
particles and try to precise the kind of criticality we are fac-
ing at jamming.

(b)(a) (c)

(d) (f)(e)

FIG. 10. �Color online� Top left: rescaled length L /L0 as a function of T. Inset: scaling factor L0 as a function of �. The black dotted line
corresponds to the average speed of the intruder. Top middle: cumulated pdf of the burst durations T in the intruder’s displacement signal.
Inset: cutoff ���� of the distribution of T. The eye-guiding lines are power laws with an exponent −2 /3. Top right: cumulated pdf of the
rescaled length L /L0. Inset: cutoff ���� of the distribution of L /L0. The eye-guiding lines are power laws, with an exponent −1. Bottom left:
rescaled energy E /E0 as a function of TE. Inset: scaling factor E0 as a function of �. Bottom middle: cumulated pdf of the burst durations
TE in the energy signal. Inset: cutoff �E��� of the distribution of TE. The eye-guiding lines are power laws with an exponent −2 /3. Bottom
right: cumulated pdf of the rescaled energy E /E0. Inset: cutoff ���� of the distribution of E /E0. The eye-guiding lines are power laws, with
an exponent −1.

FIG. 11. �Color online� Comparison of the evolution of dynami-
cal length scales: the cutoff of the distribution of the bursts of
displacement’s amplitudes � is plotted for three different forces ��
F1, � F2, and � F3� and compared to ��� the long-range correla-
tion length �4, revealed from the dynamics of the grains without the
intruder. The dotted and solid curves are guiding the eye like �−1.
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V. DISCUSSION AND CONCLUDING REMARKS

We have experimentally studied the motion of an intruder
dragged into an amorphous monolayer of horizontally vi-
brated grains at high packing fractions. A first “fluidization”
transition separates a continuous motion regime, where the
force-velocity relation is affine from an intermittent motion
one, where the force-velocity relation is clearly stiffer. The
force threshold increases with the packing fraction and seem-
ingly diverges at the jamming transition defined as the pack-
ing fraction where the pressure goes to zero in the absence of
vibration. Below this threshold the intruder motion is inter-
mittent. We have reported the existence of a second transi-
tion, where the fluctuations associated with this intermittent
motion exhibit a critical behavior. This evidence is supported
not only by the analysis of the motion of the probe but also
by that of the surrounding grains. The bursting events are
characterized by increasingly heterogeneous patterns in the
instantaneous displacement field around the intruder and an
increasingly spreading redistribution of the free volume.

Several other experimental, numerical, and theoretical in-
vestigations of the response of a locally driven particle in a
dense system report similar observations. Our aim here is to
discuss similarities and differences among these studies in an
attempt to shed some light on sometime apparently contro-
versial results. To our knowledge the first measurements
were conducted in colloidal suspensions �4�. At low packing
fractions, the authors report a linear force-velocity relation.
At higher packing fraction but below the glass transition a
yield stress F0 develops below which the probe remains
trapped. For larger forces, the probe is delocalized by the
applied force, the bead is pulled with a fluctuating velocity,
and a nonlinear force-velocity relation holds. As emphasized
by the authors themselves, the existence of a force threshold
below the glass transition, where the spontaneous fluctua-
tions alone still allow the particles to escapes their cages and
relax, is rather intriguing. Indeed, in a recent work �25�, the
force-velocity relation in dense suspensions has been inves-
tigated theoretically in the context of mode coupling theory
and compared to some of the above experimental data �4�
and to numerical simulations of a slightly polydisperse
quasi-hard-sphere system undergoing strongly damped New-
tonian dynamics. This time a force threshold is predicted to
delocalize the probe particle above the glass transition. Be-
low the glass transition a strongly nonlinear force-velocity
relation is predicted and reported in the simulations. This
steep dependence of the velocity on the applied force could
explain the above observation of a threshold in an experi-
ment where the lower resolution on the velocity is always
finite.

Recent simulations consider the motion of a single probe
particle driven with a constant force in a binary mixture of
two-dimensional disks with stiff spring repulsive interactions
at zero temperature �20,26�. As the packing fraction is in-
creased toward jamming, the average velocity of the probe
particle decreases and the velocity fluctuations show an in-
creasingly intermittent or avalanchelike behavior. The veloc-
ity distributions are exponential away from jamming and
have a power-law character when approaching it within less
than 1%. These observations are very similar to those re-

ported in the present study. The averaged velocity depen-
dence on the packing fraction exhibits the same faster than
exponential decrease when approaching jamming and the
power-law characters of the velocity distributions close to
jamming are identical. However the authors report the exis-
tence of a critical threshold force that must be applied for the
probe particle to move through the sample, which increases
when increasing the packing fraction above jamming,
whereas we never observed a complete arrest of our probe.
In the simulations, once the probe stops, it cannot move any-
more because there is no temperature. In the present experi-
ments the vibration allows the system to explore new force
chain configurations and thereby to provide the intruder new
opportunities of moving. As a final remark on the force-
velocity relation, we would like to emphasize that the affine
relation, which we observe above threshold when the motion
is continuous, is not to be confused with the linear response
of Stoke’s law. On the contrary, we believe that our observa-
tions correspond to the highest force regime reported in �25�,
where the nonlinear response ultimately recovers a linear be-
havior.

An important difference between our system and the sys-
tems described above is that we are dealing with frictional
particles. The role of friction close to jamming is an impor-
tant issue. Recent important progresses have been made in
this matter �27–29�, but many open questions remain un-
solved. The isostatic criteria for mechanical stability z=2d
valid for frictionless systems a priori turn into a double in-
equality d+1�z�2d in the presence of friction, suggesting
that friction could blur the critical character of jamming re-
ported in frictionless systems. It was suggested in �20� that
the absence of power-law behavior in the velocity distribu-
tion observed in �16� might indeed be an effect of friction.
Our observations clearly demonstrate on the contrary that the
jamming transition remains critical in the presence of fric-
tion. Such a result suggests the existence of a generalized
isostaticity criterion for frictional systems as proposed re-
cently �29�.

Not only the intruder motion exhibits the strongest inter-
mittency at jamming but also the statistics of the bursts obey
critical scalings. The later are reminiscent of many other phe-
nomena such as earthquakes �30�, Barkhausen noise �23�,
crack tip dynamics in heterogeneous materials �31�, and ge-
nerically assimilated to the so-called crackling noise �22�. It
is also a distinct behavior of various random failure and load
redistribution models �32�, which can be used to describe
stress redistribution in stick-slip granular experiments �33�.
These similarities, even at some quantitative level—see in
Table I a comparison of some of the exponents obtained in
different systems—should not hide important differences
among these phenomena even at the conceptual level. First
the kind of criticality reported here has little to do with self-
organized criticality, often associated with crackling noise
observations �22�. Second in many situations, an external
parameter is increased �i.e., the loading force, the magnetic
field� and the system fails once it has overcome some ran-
domly distributed threshold. A contrario in the present situ-
ation, the dragging force is kept constant, the system is vi-
brated, and it explores successive configurations. To what
extent the study of these different dynamics are complemen-
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tary is an interesting issue. Further investigations with an
intruder dragged at constant velocity should provide interest-
ing clues in this direction.

Altogether, investigating the motion of a probe dragged at
constant force in a dense granular media, we have identified
a force threshold diverging at the jamming transition, below

which the motion of the probe is intermittent and exhibits
criticality at jamming. More generally, we believe that mi-
crorheological and macrorheological studies combined to
statistical observations such as dynamical correlations are
key elements to further investigate the underlying mecha-
nisms of the jamming transition in frictional systems.
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